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But First...

Adaptive LP: Start with a small problem and add the constraints adaptively.

M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear programming
decoding,” preprint available at ArXiv
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Combined Channel Equalization and Decoding

Gain obtained by combining equalization and decoding

Need to exchange soft information between them.

SOVA / BCJR for equalization + message-passing

Exponential complexity in memory length

Incorporate the ISI channel into the decoding graph

Can combine with the Tanner graph of the LDPC code

Use linear programming (LP) or iterative message passing (IMP) for decoding

Kurkoski et al.: Bit-based detection

4-cycles in the graph

Goal: Find a graph representation where LP can be applied.
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ML Detection in a PR Channel
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Optimization problem in general matrix form

Minimize − qT x̃ +
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x̃T Px̃

Subject to x ∈ C

The general form of an integer quadratic programming problem (IQP)

If no coding, C = {0, 1}n
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Linearization of the Objective Function

Define state variables:

z̃t,j = x̃t · x̃t−j or equivalently zt,j = xt ⊕ xt−j mod 2

The IQP can be rewritten as a decoding a binary linear code:

Minimize
X

t

qt xt +
X

t

X
j

λt,j zt,j ,

Subject to x ∈ C,
zt,j ⊕ xt ⊕ xt−j = 0 mod 2, j = 1, . . . , µ,

t = j + 1, . . . , n

For the equalization problem

qt =
X

i

hi rt+i ← Output of matched filter

λt,j = λj = −
µ−jX
i=0

hi hi+j ← −1× Correlation function of the channel
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Tanner Graph Representation

PR layer:
nµ degree-1 state bit nodes and degree-3 check
nodes

cycles of length 6 or more

LP decoding
Parity check c with neighborhood Nc is relaxed to

X
i∈V

xi −
X

i∈Nc\V

xi ≤ |V | − 1, ∀ V ⊂ Nc s.t. |V | is odd

and xi ∈ {0, 1} is relaxed to 0 ≤ xi ≤ 1.
ML certificate property

IMP Decoding
Use the objective coefficients as estimates of the log-likelihood ratios (LLR)
Complexity per iteration is linear in block length and channel memory size
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Project the Problem Back to n-D

The relaxation of the binary constraint zt,j = xt ⊕ xt−j can be simplified as

|xt − xt−j | ≤ zt,j ≤ 1− |xt + xt−j − 1|.

Depending on the sign of its coefficient, λt,j , zt,j will be equal to one of the two
bounds.

Solve zt,j in terms of xt , and project the problem back to the n-D space:

Minimize f (x) =
X

t

qt xt +
XX
t,j:λt,j >0

|λt,j ||xt − xt−j |

+
XX
t,j:λt,j <0

|λt,j ||xt + xt−j − 1|,

Subject to 0 ≤ xt ≤ 1, ∀t = 1, . . . , n

Convex, piece-wise linear objective function.
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LP-Proper Channels: Guaranteed ML Performance

Theorem

LP detection is guaranteed to find the ML solution if and only if the channel satisfies:

Weak Nonnegativity Condition (WNC): Every check node ct,j that is on a
cycle in the Tanner graph corresponds to a nonnegative coefficient: λt,j ≥ 0.

We call them LP-proper channels.

Can interpret the problem as generalized
min-cut

Corollary
The solution x̂ of LP detection on any channel is in {0, 1

2 , 1}n.
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Simulation: LP and MSA

1 CH1: h(D) = 1− D − 0.5D2 − 0.5D3 (satisfies WNC)← LP-proper
2 CH2: h(D) = 1 + D − D2 + D3 ← Asymptotically LP-proper
3 CH3: h(D) = 1 + D − D2 − D3 ← LP-improper
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General Channels: High SNR Analysis

Question
When is the performance of LP asymptotically close to ML?

LP detection has two dominant types of failure

Type 1 (E1): ML gives the correct solution x , but LP gives a fractional solution, x̂ .

Type 2 (E2): Both LP and ML fail to find the correct solution.

Two extreme cases:

Pr[E1]� Pr[E2] at high SNR: LP asymptotically achieves ML performance←
Asymptotically LP-Proper Channel

Pr[E1]≥ β > 0, ∀ SNR: LP performs poorly← LP-Improper Channel

Sufficient condition for type-1 failure:

∃x̂ ∈


0,
1
2

, 1
ffn

: f (x̂)− f (x) ≤ 0

Separate the signal and noise terms: f (x̂)− f (x) = δ + η

If δ ≤ 0 for some (x , x̂), the channel is LP-improper.

To find the dominant error event, we should optimize over x and x̂ .
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All-1
2 Event
The most interesting case is when x̂ = [ 1

2 , · · · , 1
2 ]:

Lemma
If the transmitted sequence is i.i.d. Bernouli(1/2), as n→∞

δ → n
h
|λ0| −

µX
j=1

|λj |
i

and ς2 → σ2n
ˆ
|λ0|
˜

Natural to define δ∞ , 1
|λ0|

 
|λ0| −

µP
j=1
|λj |

!

Theorem
The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of
transmitted symbols goes to 1 as the block length n goes to infinity for any
SNR, i.e., the channel is LP-improper, if δ∞ < 0.

Lemma
LP-proper channels satisfy δ∞ > 1

2 .
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Simulation Results: WER vs. δ∞

200 randomly-generated
channels of memory size 4.

The channel taps are i.i.d.
∼ N (0, 1).

Normalized to have unit power
gain:

|λ0| =
X

j

|hi |2 = 1

SNR=11dB

Strong correlation between the
performance and δ∞.
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Coded LP Detection

Add the relaxed parity-check constraints to the set of constraints.

These constraints cut some of the existing pseudo-codewords, and add some
new ones.

Corollary
Consider a linear code with no “trivial” (i.e., degree-1) parity check, used on a channel
with δ∞ < 0. Then, coded LP detection on this system has a WER bounded below by
a constant at all SNR for large block lengths.

Proof.
Follows from the analysis of uncoded detection and the fact that the all- 1

2 vector
satisfies all the non-trivial constraints of any linear code.
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Coded IMP Detection

Min-Sum Algorithm (MSA)
Use the LP coefficients {qt} and {λt,j} as the
costs.

Sum-Product Algorithm (SPA)
Estimate “log-likelihood ratios” by multiplying {qt}
and {λt,j} by 2/σ2.

In the absence of ISI reduce to the true LLRs.

Use a selective rule for combining messages in order to mitigate the effect of
cycles in the PR layer.

To calculate the messages going to the PR layer only use the messages coming from
the LDPC layer:
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Simulation Results

A randomly-generated regular LDPC
code of length 200, rate 1/4, and
variable degree 3.

The following PR channels:

1 No-ISI Channel: h(D) = 1,

2 EPR4 Channel:
h(D) = 1 + D − D2 − D3 (δ∞ = 0,
LP-improper),

3 Modified EPR4:
h(D) = 1 + D − D2 + D3 (δ∞ = 1

2 ,
Asymptotically LP-proper),

4 PR4 Channel: h(D) = 1− D2

(δ∞ = 1
2 , LP-proper).
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More on the EPR4 Channel

With coding, there is a large gap
between LP, MSA, and SPA.

Unlike LP, IMP works on LP-improper
channels.

Some gain for MSA by selective
combining
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Conclusion

1 Summary

Proposed a linear relaxation of the equalization problem

Easily applicable to combined equalization and decoding with LP or message passing

Derived necessary and sufficient conditions for optimal performance

Characterized the error events

IMP is superior to LP in combined channel equalization/decoding

2 Outlook

Modifying the constraints/combining rules to improve on LP-improper channels

Applications in the context of PRML detection

Applications to 2-D ISI channels

Exact performance analysis, especially with coding
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